Building

(Auditing) Remote Access Security in 2011

I’m currently involved in a “Remote Access Security Assessment” and you might be wondering what exactly this means. Well, so did we. At least to some degree (btw: last year we provided some notes on types of security assessments here).

It happens quite often we’re brought into an organization to perform “a security assessment” of “some item” (“our network”, “that new procurement portal”, “the PKI” etc.). It happens as well the customer does not have a very clear idea of the way such an assessment should be carried out (telling us “you are the experts, you should know what to do”). Or the five people from the customer’s side present in the kick-off meeting have five different concepts (ok, four. as one of them only wants “to get that damned assessment done so we can finally go live”) and we end up moderating their arguments on what should be tested, how this should be done, when this is going to happen, which type of report format is needed (obviously, there’s different ones, depending on the goal/scope/methodology of the assessment…) etc.

In such “vague cases” we usually define a set of (~ 10) categories/[security] criteria to be fulfilled by the item in question, based on different sources like the organization’s internal policy framework, potentially the project-to-be-assessed’s security goals, relevant standards and “common security best practices” (often the latter only to a small degree as we have a mostly risk based security approach which does not necessarily fit very well with [assumption-based] “best practices”; more on this philosophical question in yet-another-post ;-))

For example, in the case of a “Firewall & DMZ assessment” these categories/criteria could include stuff like “Dedicated LAN switches” (from $ORG’s internal guidelines), “Logging of denied packets” (same source), “Secure management” (from ISO 18028-3), “Scalability” (based on business needs as for $ITEM) or “Proper vulnerability mgmt” (ISO 27001).

We then perform a combination of assessment methods to obtain the necessary information to evaluate those categories in terms of “fulfilled”, “major/minor non-compliance”, “leads to relevant business risk”, “documentation missing” and the like.

Figuring the individual categories/criteria which are suited to the customer, their needs and the assessment’s (time, budget, political) constraints usually is intellectually challenging and thus “hard work”. Still, this approach (hopefully ;-)) ensures we can “answer the customer’s relevant question[s] in a structured way and with reasonable effort”.

So why do I tell you all this (besides the implied shameless self-plug)? I faced the very situation in the mentioned “Remote Access Security Assessment” and made some observations that I think are worthwhile sharing.

Let’s have a look at the potential sources for the approach laid out above:

a) internal policies: if I told you that “no formal document written, say, in the last five years, covering the topic and/or available to the people engaging us” could be identified, you wouldn’t be surprised, would you? 😉

[ok, I didn’t give you any details as for the customer… but does it really matter? how many organizations do you know which have an up-to-date “remote access policy”… I mean, one that actually provides reasonable guidance besides “all remote access must be secured appropriately” …]

b) standards & “best practices”

To discuss these I’d first like to introduce some level of abstraction shortly – regular readers of this blog might remember my constant endeavor to “bring structure into things”- by breaking down “a remote access solution” to the following generic entities involved:

  • gateway(s)
  • network transmission incl. protocols & algorithms
  • “endpoints”

Traditionally there have been 3-4 relevant standard documents in the remote access space, that are ISO 18028-4 Information technology — Security techniques — IT network security — Part 4: Securing remote access (latest version from 2005), NIST SP 800-77 Guide to IPsec VPNs (2005), NIST SP 800-113 Guide to SSL VPNs (2008) and potentially revision 1 of NIST SP 800-46 Guide to Enterprise Telework and Remote Access Security (Rev. 1 published in June 2009).

[Of course, feel free to notify me by PM or comment on this post if you’re aware of others].

Those documents are mainly focused on the first two of the above “abstract elements”, that are gateways and network transmission, which results in lengthy discussions of gateway architectures or protocol specifics and ciphers. It becomes clear that back then the main threats were considered to be “attacks against gateways” or “attacks against network traffic in transit” (whereas today the main risk is probably “unauthorized physical access to endpoint”, after loss or theft of device/smartphone).

But times have changed, and in 2011 I tend to assume that these two elements (gateways, network transmission) are sufficiently well handled & secured in the vast majority of organizations. Ok, just when I write this I somehow hesitate, given I recently worked in an environment where the deployed gateways (based on the – from my perspective – market lead SSL gateway solution) were configured to support stuff like this:

SSLv3

———————————————————————-

AES256-SHA – 256 Bits

DES-CBC3-SHA – 168 Bits

AES128-SHA – 128 Bits

RC4-SHA – 128 Bits

RC4-MD5 – 128 Bits

DES-CBC-SHA –  56 Bits

EXP-DES-CBC-SHA –  40 Bits

EXP-RC2-CBC-MD5 –  40 Bits

EXP-RC4-MD5 –  40 Bits

 

TLSv1

———————————————————————-

AES256-SHA – 256 Bits

DES-CBC3-SHA – 168 Bits

AES128-SHA – 128 Bits

RC4-SHA – 128 Bits

RC4-MD5 – 128 Bits

DES-CBC-SHA –  56 Bits

EXP-DES-CBC-SHA –  40 Bits

EXP-RC2-CBC-MD5 –  40 Bits

EXP-RC4-MD5 –  40 Bits

 

Not that I regard this as a relevant risk, it’s just interesting to note. I mean, it’s 2011…

 

Back to track: so, while gateways and protocols might no more constitute areas of “deep concern”, nowadays “the endpoint” certainly does. When the mentioned standards were written, endpoints were supposed to be mostly company managed Windows systems. In the meantime most organizations face an “unmanaged mess”, composed of a growing number of smartphones and tablets of all flavors, some – to some degree – company managed, quite some predominantly “free floating”.

And unfortunately there is – to the best of my knowledge – no current (industry) standard laying out how to handle these from a security perpective. Which in turn means once an “authoritative framework” is needed (be it for policy reasons, be it for assessments using the approach I described above) there’s nothing “to rely on”, but this has to be figured by the individual organization.

To get a clearer picture I went out contacting “some of my ISO colleagues” in the “how do you handle this?” manner. In the following I’ll lay out “the results how mature organizations address the topic”, together with some recommendations from our side, based on our usual approach to balance security and business needs.

In the end of the day the task can be broken down to the question: “which types of endpoints should be allowed which type of access to which (classification level of) data?”.

To answer this one in a comprehensive and consistent way a number of factors has to be taken into account:

  • different types of endpoints.
  • different types of “access methods”.
  • classification of data to be processed.
  • potential prerequisites for certain use cases (type of authentication, employee signing an acceptable use policy [AUP], additional [technical] security controls on endpoints and the like).

 

Classifying types of endpoints

I personally think that the “traditional distinction” between (just) company-managed and non company-managed – which is used for example in ISO 18028-4 and NIST SP 800-113 – does no longer work, but that it makes sense to differentiate roughly between three types of endpoints. To characterize those I quote from a policy I wrote some time ago:

“Company managed device

Any device owned and managed by $COMPANY, e.g. corporate laptops.

 

Private trustworthy device

Any device that is owned by an individual employee which is used solely by named invidual and which is kept in an appropriate state as for security controls (up-to-date patch level, anti-malware protection and/or firewall software if feasible etc.). It might be (partly) managed by company driven controls (e.g. configuration policies).

If used for local processing of restricted data appropriate encryption technologies protecting said data must be in place.

In no instance shall any competitors, business partners, and/or other business-relevant parties be allowed to physically access such a device, even if such persons are otherwise related to the employee or are personal friends or acquaintances of the employee. Furthermore information classified ‘strictly confidential’ shall never be processed on this type of device.

 

Untrusted device

All other devices, for example systems in a cyber café or devices in an employee’s household which are shared with family members or friends.”

Pls note that both NIST SP 800-46r1 (where the party responsible for the security of the device is taken into account. and this one can be: organization, teleworker, third party.) and Gartner (classifying into “platform”, “application” and “concierge” types of services) use a similar three-fold classification approach.

 

Access methods

By “access method” I mean the way the actual data processing is performed. Let’s classify as follows:

  • “full network access” by means of a tunneled IP connection, provided by a network stack like piece of code. This is where the traditional full-blown IPsec or SSL VPN clients come into play.
  • “application based” access. This includes all HTTP(S) based portals (with MS Outlook Web Access [OWA] being the most prominent example) and the portals provided by typical SSL VPN gateways that enable users to run certain applications (MS Outlook, SAP GUI, File Browsing and the like).
  • “restricted application based”: same as above but usually without file exchange between remote network and local system, e.g. OWA without attachments, or remote desktop access without use of local drives, no copy+paste in TS client etc.
  • “(just) presentation logic”: here no actual data processing on the endpoint takes place. The best known example is probably Citrix based stuff, in different flavors (ICA client, Citrix Receiver, xd-agent et.al.).

Classification of data to-be-processed

Another aspect to take into account is the classification of the data that is allowed to be processed on a “remote device”. While this may seem a no-brainer at the first glance, in reality this is a tricky one as most organizations do not dispose of a (“widely used in daily practice”) data classification scheme anyway and usually there’s no file (other information entity) attributed meta-information that allows the easy identification of its classification level, together with a subsequent enforcement of technical controls (which, btw, is one of the main reasons why DLP is so hard to implement correctly. which could be discussed in more detail in another post 😉

And, of course, for an employee who has access anyway technically it’s usually easy to process higher classified data “than allowed”. The most common approach addressing this is having the employees siging AUPs prohibiting this/such type of handling, combined with some liability in case of breaches of such data (this approach, again, might be a minefield in itself, depending on the part of the world and associated juridical system you’re [located] in ;-)).

For the following discussion let’s assume that organizations use a scale of four classifications/ classes designated SC0 to SC3 (where SC = “security class” or “security classification”) with 3 being the highest (e.g. “strictly confidential” or “top secret”) and 0 being the lowest (e.g. “public”, “unclassified”).

 

Prerequisites for certain use cases

Frequently additional organizational or technical prerequisites for certain use cases (e.g. types of devices, potentially in combination with certain access methods) are induced. In this space can be found:

  • Acceptable Use Policies (AUPs) prescribing what can or should be done, which lay out “prohibited practices” (that might still technically possible, see above), the handling of backups, the separation of business and private use etc.
  • the level of authentication required for certain usage scenarios.
  • additional security controls on the endpoint (anti-malware, local firewall, local disk/file/container encryption and the like), with their presence on the endpoint potentially verified by some “host integrity checking” technology, e.g. “UAC” in Juniper space. In this context it should be noted that in most environments UAC or similar approaches from other vendors do not provide an actual security benefit (“enforce that only a trustworthy and secure endpoint can connect”) but simply differentiate between “company managed” and “unmanaged” in the way “look for a certain registry key and if present assume that’s a company managed device” (“no idea if the associated piece of security software is really present, let alone correctly configured, not to mention that it provides any actual security benefit”…).

 

Putting it all together

Now, putting all this together I came up with the following table. It displays what we feel “is common best security practice” nowadays for handling remote access (endpoint) security, balancing business and security needs:

 

Type of device Classification of data (allowed) to be processed Allowed access methods Prerequisites
company managed usually all, some organizations do not allow highest on mobile devices at all all
private trustworthy (which means, as of definition, disposing of appropriate capabilities/controls) depends. some organizations do not  allow highest in this scenario. We recommend: no SC3 here. usually all, but “application based” preferred over full network connect MFA, appropriate capabilities, sometimes AUP
all (others) including “private” devices without appropriate capabilities (e.g. apps on iPads that do not use the “data protection” feature) SC3 not allowed at all. In case of SC2… no data processing on device, only presentation logic MFA, Employee signed AUP
SC0, SC1 only “restricted application based” recommended
all others when gateway deployed sandbox technologies (e.g. Juniper Secure Virtual Storage for Win32 systems) are used. depends, usually sth in the range SC 0-2, pretty much never SC3. We recommend: no SC3. “application based” MFA, Employee signed AUP


Pls note: evidently, “everything else” (other combinations of devices, access methods or data classification levels to-be-processed) can be implemented as well (and this actually happens in environments I regularly work in). I mean, “infosec follows, supports and enables business”. It’s just – from our perspective – a risk acceptance needed then 😉

So, this is what I finally took as the “baseline to evaluate the actual implementation against” (for the “endpoint” category) in the course of that assessment mentioned in the beginning of the post. Hopefully laying out the sources of input, the classifications and the rationale leading to certain restrictions turns out to be helpful for some of you, dear readers.

thanks

Enno

 

Continue reading
Building

Smart (and Scary) Supply Chain Attack

This advisory describes an interesting attack vector:

“In the period of December 2010 until August 2011, Cisco shipped warranty CDs that contain a reference to a third-party website known to be a malware repository. When the CD is opened with a web browser, it automatically and without warning accesses this third-party website. Additionally, on computers where the operating system is configured to automatically open inserted media, the computer’s default web browser will access the third-party site when the CD is inserted, without requiring any further action by the user.”

The approach is smart as it potentially avoids the malware scanning stage that is presumably part of the preparation and shipping process of those CDs. And as it exploits the trust relationships pertinent to the network equipment supply chain

We’ll probably see (yet) more such stuff in the next years.

Have a great day,

Enno

 

 

Continue reading
Breaking

The Key to your Datacenter

 

During our ongoing research on the security of cloud service providers and cloud based applications, we performed a regular audit of our AWS account password. Thinking of popular incidents and evergreens in attack vectors, we were wondering which consequences an online bruteforce attack on our AWS password would have. So we decided to perform a bruteforce attack against our own account. Analyzing the login process of AWS, the following requirements for the bruteforce tool to be used could be derived:

  • Cookie Handling
  • HTTPS support
  • HTTP 3xx support.

It turned out that it was pretty hard to find a password testing tool which fulfilled these requirements and would be able to actually handle the complex AWS login process — eventually there was none. Since we use and like Burp Suite pretty much, the Intruder suggested itself as an alternative which is straight forward to configure even though it might lack the speed and efficiency of special bruteforcing tools. Using burp’s history, we were able to identify the request which triggered the login process:

After the request is sent to the Intruder, the password field is marked

and the payloads to be used are configured.

Using exemplary payloads, it is possible to identify a successful login attempt, since it results in a redirect to the authenticated area/SSO server/whatever whereas a wrong passwords results in HTTP 200 presenting the AWS login page again:

Having this basic bruteforcing process established, the wordlist to be used must be generated. To decide which complexity should be covered, the Amazon password policy must be analyzed — if the restrictions in place deserve to be called a policy. The only restriction is that the password is between 6 and 20 characters (though the upper limit was determined regarding the maxlength field parameter when changing the password using the webfrontend, since there is no documentation about this available. Thinking of business needs, this behavior might be understandable since Amazon loses “endusers” and therefore money if their password policy is too strict). So we decided to use a wordlist which contains all passwords of 6 characters consisting of numbers (which can be generated pretty easy reactivating some old perl scripting skills: perl -le ‘printf “%06d”, $_ foreach(1..999999)’ 😉 ). Such passwords even might be pretty common when thinking of “birthday passwords”.

After performing about 400k requests, we paused the attack and searched for requests which resulted in a HTTP 302 response, just as the baseline request did.

And indeed, it was possible to bruteforce the password — which is not such a big surprise though. The bigger — and worse — surprise is, that it was still possible to login to our amazon account after performing about 2 million requests (including some dry runs) within two days originating from one single IP adress without having the account locked, being throttled down or notified in any way. And we were performing about 80k requests per hour.

 

Coming back to the title of the blogpost: At the moment of our investigation, there were no protection mechanisms against bruteforce attacks for the key to your datacenter — which your AWS credentials actually can be, if you are hosting a large amount of your services in EC2. Following a repsonsible disclosure policy, we contacted the AWS Security Team and got a very comprehensive answer. As we supposed, they pointed us to their MFA solution, which is basically, even though there was a major incident recently, a viable security control when authenticating users for data center access. But in addition, we had a long and beneficial dialog about potential mechanisms such as connection throttling and account locking. The outcome of our discussion is a CAPTCHA mechanism which kicks in after a brute force attempt is detected — and was also re-tested several times by our bruteforcing attempt. It was quite impressive to see that it was possible for Amazon to implement additional security measures in such a short time frame, regarding the huge size and complexity of the AWS environment. So we were really glad to get in touch with the committed AWS Security Team and were really happy to see that those guys are really into security and trying to communicate with their customers.

Continue reading
Building

iOS Hardening Configuration Guide

Hi everybody,
eye-catching title of this post, huh?

Actually there is some justification for it ;-), that is bringing this excellent document covering the exact topic to your attention.
Other than that this post contains some unordered reflections which arose in a recent meeting in a quite large organization on the “common current iPad topic” (executives would like to have/use an iPad, infosec doesn’t like the idea, business – as we all know – wins, so bring external expertise in “to help us find a way of doing this securely” yadda yadda yadda).
Which – given those nifty little boxes are _consumer_ devices which were probably never meant to process sensitive corporate data – might be a next-to-impossible task… at least in a way that satisfies business expectations as for “usability”…[btw: can anybody confirm my observation that there’s a correlation between “rigor of restriction approach” to “number of corporate emails forwarded to private webmail accounts”?]

Anyway, in that meeting – due to my usual endeavor to look at things in a structured way – I started categorizing flavors of data wiping. I came up with
a) device-induced (call it “automatic” if you want) wipe. Here the trigger (to wipe) comes from the device itself, usually after some particular condition is met, which might be

  • number of failed passcode entries. This is supposed to help against an opportunistic attacker who “has found an iPad somewhere” and then tries to get access. Still, assuming a 4-digit passcode, based on their distribution the attacker might have a one-in-seven chance to succeed when the number of passcodes-to-fail is set to ten (isn’t this is the default setting? I don’t use such a device so I really don’t know ;-)).
  • check some system parameter (“am I jailbroken?”) and then perform a wipe.This somehow raises a – let’s call it – “matrix problem”: “judge the world’s trustworthy state from the own perspective and then delete my memory if found untrustworthy”. But how can I know my decision is a correct one if my own overall (“consciousness”) state might heavily depend on the USB port I’m connected to…
  • phone home (“Find My iPhone” et.al.), find out “I’m lost or stolen”, quickly wipe myself.This one requires a network connection, so a skilled+motivated attacker going after the data on the device will prevent this exact (network) connection. As most of you probably already knew ;-).

b) remote-wipe. That largely overhyped feature going like “if we learn that one of our devices is lost or stolen, we’ll just push the button and, boom, all the data on the device is wiped remotely”.

Unfortunately this one requires that the organization is able to react once the state of the device changed from “trustworthy environment” to “untrustworthy environment”. Which in turn usually relies on processes involving humans, e.g. might require people to call the organization’s service desk to inform them “I just lost my iPad”… which, depending on various circumstances that I leave the reader to imagine, might happen “in close temporal proximity to the event” or not …
And, of course, a skilled+motivated attacker will prevent the network connection needed for this one, as stated above.

So, all these flavors of wiping have their own share of shortcomings or pitfalls. At some point during that discussion I silently asked myself:

“How crazy is this? why do we spend all these cycles and resources and life hours of smart people on a detective+reactive type of control?”

Why not spend all this energy on avoiding the threat in the first place by just not putting the data on those devices (which lack fundamental security properties and are highly exposed to untrustworthy human behavior and environments)?
Which directly leads to the plea expressed in my Troopers keynote “Do not process sensitive data on smartphones!” (but use those just as display terminals to applications and data hosted in secure environments).

Yes, I know that “but then we depend on network connectivity and Ms. CxO can’t read her emails while in a plane” argument. And I’m soo tired of it. Spending so much operational effort for those few offline minutes (by pursuing the “we must have the data on the device” approach) seems just a bit of waste to me [and, btw, I’m a CxO “of company driven by innovation” myself ;-)]. Which might even be acceptable if it wouldn’t expose the organization to severe risks at the same time. And if all the effort wasn’t doomed anyway in six months… when your organizations’ executives have found yet another fancy gadget they’d like to use…

Think about it & have a great sunday,

Enno

PS: as we’re a company with quite diverse mindsets and a high degree of freedom to conduct an individual lifestyle and express individual opinions, some of my colleagues actually think data processing on those devices can be done in a reasonable secure way. See for example this workshop or wait for our upcoming newsletter on “Certificate based authentication with iPads”.

Continue reading
Breaking

Week of releases – apnbf

Another day, another tool 😉

Today I’m proudly releasing the first version of apnbf, a small python script designed for enumerating valid APNs (Access Point Name) on a GTP-C speaking device. It tries to establish a new PDP session with the endpoint via sending a createPDPContextRequest. This request needs to include a valid APN, so one can easily distinguish from a valid APN (which will be answered with a createPDPContextResponse) and an invalid APN (which will be answered with an error indication message). In addition the tool also parses the error indication and displays the reason (which should be “Missing or unknown APN” in case of an invalid APN).

Don’t waste time, get the source here (5a122f198ea35b1501bc3859fd7e87aa57ef853a)

cheers

/daniel

Continue reading
Breaking

Week of releases – gtp_scan-0.7

So, after having a completely new release yesterday, we will stay with already known but updated software today. You might have heard of gtp_scan before, which is a small python script for scanning mainly 3G and 4G devices and detecting GTP (GPRS Tunneling Protocol) enabled ports. As GTP is transported via UDP and we all know, UDP scanning is a pain, the tool uses the GTP build-in echo mechanism to detect GTP speaking ports. Since the last version I’ve implemented some new features:

  • Support of complete GTP spectrum (GTP-C, GTP-U, GTP’)
  • Support for scanning on SCTP
  • Improved result output, including validity check of response packages

Find the sources here (bbdcc8888ebb4739025395f8c1c253fa5fd2bb15).

 

have a nice one.

/daniel

Continue reading
Breaking

Week of releases – dizzy

I’m proud to announce, today a new fuzzing framework will see the light of day. It’s called dizzy and was written because the tools we used for fuzzing in past didn’t match our requirements. Some (unique) features are:

  • Python based
  • Fast!
  • Can send to L2 as well as to upper layers (TCP/UDP/SCTP)
  • Ability to work with odd length packet fields (no need to match byte borders, so even single flags or 7bit long fields can be represented and fuzzed)
  • Very easy protocol definition syntax
  • Ability to do multi packet state-full fuzzing with the ability to use received target data in response.

We already had a lot of success using it, now you will be able to know the true promises.

Find the source here (c715a7ba894b44497b98659242fce52128696a17).

/daniel

Continue reading
Breaking

Week of releases – loki-0.2.7

Today I’m going to open up the ‘Week of releases’, which means there will be some new software in the next days.

Lets start with a new version of loki. The version goes up to 0.2.7 and there are a lot of new features:

  • SCTP support in the base.
  • Invalid option and invalid header scan in the ICMP6 module.
  • On-line msg updates for neighbor messages in the RIP module.
  • New module for rewriting 802.1Q labels
  • Lots of small improvements and bug-fixes
  • Some new features I won’t tell right now, get the source and find them yourself 😉

Also there are new packages for gentoo, ubuntu-11.04 and fedora-15, also its the first time, packages for amd64 systems are available.

Downloads:

  • Package for gentoo – c29a6cca7a1f7394a473d4b50a1766e9f13fd5a5

    Dependencies:

    • Manifest – 9338ebcc6a3cb58478671f00cac3114efe5df337
  • Package for ubuntu 11.04 i386 – bf9fa05aa20677ac209126b78c3829940daaa8ee

    Dependencies:

    • pylibpcap – e30c9c8ab1a8e1ee3ddedd05475767dc9f85b526
  • Package for ubuntu 11.04 amd64 – 50f5c784f039a15613affd52e304e61fd2a16a58

    Dependencies:

    • pylibpcap – 9457644ef52fd6bfdb0da8790eee759cc4f76c8b
  • Package for fedora 15 i686 – 06398d9c8ca5fd0d80b0da65756b01bfe07652b4

    Dependencies:

    • pylibpcap – d7e2a9249cba4362d4e435643257ee6a89a412cf
    • libdnet-python – 83bbe3895a58d264190afaef586aba8c2bd921f4
  • Package for fedora 15 amd64 – 06c1fca3f8390cbe00e8e5c427327379c30222d6

    Dependencies:

    • pylibpcap – 62d8cc32ef42211584df439ace8f453a3822d5b1
    • libdnet-python – d8e969b35b2b5613f364525f21c8e0738a42e061

enjoy!

/daniel

Continue reading
Breaking

The 5 Myths of Web Application Firewalls

Some days ago a security advisory related to web application firewalls (WAFs) was published on Full Disclosure. Wendel Guglielmetti Henrique found another bug in the IBM Web Application Firewall which can be used to circumvent the WAF and execute typical web application attacks like SQL injection (click here for details). Wendel talked already (look here) at the Troopers Conference in 2009 about the different techniques to identify and bypass WAFs, so this kind of bypass methods are not quite new.

Nevertheless doing a lot of web application assessments and talking about countermeasures to protect web applications there’s a TOP 1 question I have to answer almost every time: “Wouldn’t it be helpful to install a WAF in front of our web application to protect them from attacks?”. My typical answer is “NO” because it’s better to spent the resources for addressing the problems in the code itself. So I will take this opportunity to write some rants about sense and nonsense of WAFs ;-). Let’s start with some – from our humble position – widespread myths:

1. WAFs will protect a web application from all web attacks .
2. WAFs are transparent and can’t be detected .
3. After installation of a WAF our web application is secure, no further “To Dos” .
4. WAFs are smart, so they can be used with any web application, no matter how complex it is .
5. Vulnerabilities in web applications can’t be fixed in time, only a WAF can help to reduce the attack surface.

And now let us dig a little bit deeper into these myths ;-).

1. WAFs will protect a web application from all web attacks

There are different attack detection models used by common WAFs like signature based detection, behavior based detection or a whitelist approach. These detection models are also known by attackers, so it’s not too hard to construct an attack that will pass the detection engines.

Just a simple example for signatures ;-): Studying sql injection attacks we can learn from all the examples that we can manipulate “WHERE clauses” with attacks like “or 1=1”. This is a typical signature for the detection engine of WAFs, but what about using “or 9=9” or even smarter 😉 “or 14<15”? This might sound ridiculous for most of you, but this already worked at least against one  WAF 😉 and there are much more leet attacks to circumvent WAFs (sorry that we don’t disclose any vendor names, but this post is about WAFs in general).
Another point to mention are the different types of attacks against web applications, it’s not all about SQL injection and Cross-Site Scripting attacks, there also logic flaws that can be attacked or the typical privilege escalation problem “can user A access data of user B?”. A WAF can’t protect against these attacks, it a WAF can raise the bar for attackers under some circumstances, but it can’t protect a web application from skilled attackers.

2. WAFs are transparent and can’t be detected

In 2009, initially at Troopers ;-), Wendel and Sandro Gauci published a tool called wafw00f and described their approach to fingerprint WAFs in different talks at security conferences. This already proves that this myth is not true. Furthermore there will be another tool release from ERNW soon, so stay tuned, it will be available for download shortly ;-).

3. After installation of a WAF my web application is secure, no further “To Dos”

WAFs require a lot of operational effort just because web applications offer more and more functionality and the main purpose of a web application is to support the organization’s business. WAF administrators have to ensure that the WAF doesn’t block any legitimate traffic. It’s almost the same as with Intrusion Detection and Prevention Systems, they require a lot of fine tuning to detect important attacks and ensure functionality in parallel. History proves that this didn’t (and still doesn’t) work for most IDS/IPS implementations, why should it work for WAFs ;-)?

4. WAFs are smart, so they can be used with any web application, no matter how complex it is
Today’s web applications are often quite complex, they use DOM based communication, web services with encryption and very often they create a lot of dynamic content. A WAF can’t use a whitelist approach or the behavior based detection model with these complex web applications because the content changes dynamically. This reduces the options to the signature based detection model which is not as effective as many people believe (see myth No. 1).

5. Vulnerabilities in web applications can’t be fixed in time, only a WAF can help to reduce the attack surface
This is one of the most common sales arguments, because it contains a lot of reasonable arguments, but what these sales guys don’t tell is the fact, that a WAF won’t solve your problem either ;-).
Talking about risk analysis the ERNW way we have 3 contributing factors: probability, vulnerability and impact. A WAF won’t have any influance on the impact, because if the vulnerability gets exploited there’s still the same impact. Looking at probabilities with the risk analysis view, you have to take care that you don’t consider existing controls (like WAFs 😉 ) because we’re talking about the probability that someone tries to attack your web application and I think that’s pretty clear that the installation of a WAF won’t change that ;-). So there’s only the vulnerability factor left that you can change with the implementation of controls.
But me let me ask one question using the picture of the Fukushima incident: What is the better solution to protect nuclear plants from tsunamis? 1. Building a high wall around it to protect it from the water? 2. Build the nuclear plant at a place where tsunamis can’t occur?

I think the answer is obvious and it’s the same with web application vulnerabilities, if you fix them there’s no need for a WAF. If you start using a Security Development Lifecycle (SDL) you can reach this goal with reasonable effort ;-), so it’s not a matter of costs.

Clarifying these myths of web application firewalls, I think the conclusions are clear. Spend your resources for fixing the vulnerabilities in your web applications instead of buying another appliance that needs operational effort, only slightly reducing the vulnerability instead of eliminating it and also costing more money. We have quite a lot of experience supporting our customers with a SDL and from this experience we can say, that it works effectively and can be implemented more easily than many people think.

You are still not convinced ;-)? In short we will publish an ERNW Newsletter (our newsletter archive can be found here) describing techniques to detect und circumvent WAFs and also a new tool called TSAKWAF (The Swiss Army Knife for Web Application Firewalls) which implements these techniques for practical use. Maybe this will change your mind ;-).

have a nice day,

Michael

Continue reading