Breaking

ManiMed: B. Braun Melsungen AG – Space System Vulnerabilities

Manipulating Medical Devices

The Federal Office for Information Security (BSI) aims to sensitize manufacturers and the public regarding security risks of networked medical devices in Germany. In response to the often fatal security reports and press releases of networked medical devices, the BSI initiated the project Manipulation of Medical Devices (ManiMed) in 2019. In this project, a security analysis of selected products is carried out through security assessments followed by Coordinated Vulnerability Diclosure (CVD) processes. The project report was published on December 31, 2020, and can be accessed on the BSI website [1].

Continue reading “ManiMed: B. Braun Melsungen AG – Space System Vulnerabilities”

Continue reading
Breaking

ManiMed: Innokas Yhtymä Oy – VC150 Patient Monitor Vulnerabilities

Manipulating Medical Devices

The Federal Office for Information Security (BSI) aims to sensitize manufacturers and the public regarding security risks of networked medical devices in Germany. In response to the often fatal security reports and press releases of networked medical devices, the BSI initiated the project Manipulation of Medical Devices (ManiMed) in 2019. In this project, a security analysis of selected products is carried out through security assessments followed by Coordinated Vulnerability Diclosure (CVD) processes. The project report was published on December 31, 2020, and can be accessed on the BSI website [1].

Continue reading “ManiMed: Innokas Yhtymä Oy – VC150 Patient Monitor Vulnerabilities”

Continue reading
Breaking

ManiMed: Philips Medizin Systeme Böblingen GmbH – IntelliVue System Vulnerabilities

Manipulating Medical Devices

The Federal Office for Information Security (BSI) aims to sensitize manufacturers and the public regarding security risks of networked medical devices in Germany. In response to the often fatal security reports and press releases of networked medical devices, the BSI initiated the project Manipulation of Medical Devices (ManiMed) in 2019. In this project, a security analysis of selected products is carried out through security assessments followed by Coordinated Vulnerability Diclosure (CVD) processes. The project report was published on December 31, 2020, and can be accessed on the BSI website [1].

Continue reading “ManiMed: Philips Medizin Systeme Böblingen GmbH – IntelliVue System Vulnerabilities”

Continue reading
Breaking

ManiMed: Market Analysis

Manipulating Medical Devices

The Federal Office for Information Security (BSI) aims to sensitize manufacturers and the public regarding security risks of networked medical devices in Germany. In response to the often fatal security reports and press releases of networked medical devices, the BSI initiated the project Manipulation of Medical Devices (ManiMed) in 2019. In this project, a security analysis of selected products is carried out through security assessments followed by Coordinated Vulnerability Diclosure (CVD) processes. The project report was published on December 31, 2020, and can be accessed on the BSI website [1].

Continue reading “ManiMed: Market Analysis”

Continue reading
Breaking, Misc

Root Cause Analysis of a Heap-Based Buffer Overflow in GNU Readline

In the last blog post, we discussed how fuzzers determine the uniqueness of a crash. In this blog post, we discuss how we can manually triage a crash and determine the root cause. As an example, we use a heap-based buffer overflow I found in GNU readline 8.1 rc2, which has been fixed in the newest release. We use GDB and rr for time-travel debugging to determine the root cause of the bug.

Continue reading “Root Cause Analysis of a Heap-Based Buffer Overflow in GNU Readline”

Continue reading
Breaking

VMware NSX-T MITM Vulnerability (CVE-2020-3993)

NSX-T is a Software-Defined-Networking (SDN) solution of VMware which, as its basic functionality, supports spanning logical networks across VMs on distributed ESXi and KVM hypervisors. The central controller of the SDN is the NSX-T Manager Cluster which is responsible for deploying the network configurations to the hypervisor hosts.

This summer, I looked into the mechanism which is used to add new KVM hypervisor nodes to the SDN via the NSX-T Manager. By tracing what happens on the KVM host, I discovered that the KVM hypervisor got instructed to download the NSX-T software packages from the NSX-T Manager via unencrypted HTTP and install them without any verification. This enables a Man-in-the-Middle (MITM) attacker on the network path to replace the downloaded packages with malicious ones and compromise the KVM hosts.

After disclosing this issue to VMware, they developed fixes and published the vulnerability in VMSA-2020-0023 assigning a CVSSv3 base score of 7.5.

Continue reading “VMware NSX-T MITM Vulnerability (CVE-2020-3993)”

Continue reading
Breaking

ERNW White Paper 69 – Safety Impact of Vulnerabilities in Insulin Pumps

With this blog post I am pleased to announce the publication of a new ERNW White Paper [1]. The paper is about severe vulnerabilities in an insulin pump we assessed during project ManiMed and we are proud to publish this subset of the results today.

Continue reading “ERNW White Paper 69 – Safety Impact of Vulnerabilities in Insulin Pumps”

Continue reading
Breaking, Building, Events

ACM WiSec 2020

Last week I attended ACM WiSec. Of course, only virtually. The first virtual conference I attended. Coincidentally, it was also the first conference I presented at. While the experience was quite different from a “real” conference, the organizers did a great job to make the experience as good as possible with, for example, a mattermost instance to interact with other conference participants.

In the following, I will list a few talks and papers that I either found very interesting or that generally stood out to me:

Continue reading “ACM WiSec 2020”

Continue reading
Breaking

Medical Device Security: HL7v2 Injections in Patient Monitors

Digital networking is already widespread in many areas of life. In the healthcare industry, a clear trend towards networked devices is noticeable, so that the number of high-tech medical devices in hospitals is steadily increasing.

In this blog post, we want to elucidate a vulnerability we identified during the security assessment of a patient monitor. The device sends HL7 v2.x messages, such as observation results to HL7 v2.x capable electronic medical record (EMR) systems. A user with malicious intent can tamper these messages. As HL7 v2.x is a common medical communication standard, we also want to present how this kind of vulnerability may be mitigated. The assessment was part of the BSI project ManiMed, which we would like to present in the following section.

Continue reading “Medical Device Security: HL7v2 Injections in Patient Monitors”

Continue reading